Exciting News—A New LIA Website Launches Soon!

We’re thrilled to announce our new website will go live on Sunday, November 24, 2024! Experience a fresh design, enhanced usability, and improved accessibility.

Planned Outage: To ensure a smooth launch, our website will be offline from 8 PM (EST) on Saturday, November 23, 2024, until 12 PM (EST) on Sunday, November 24, 2024. Click here for a sneak peek of what’s coming!

Product Code: PIC06_M202

Topographical Electrodes for Poling Lithium Niobate
Authors:
Benjamin Johnston, Macquarie University; Macquarie Australia
Michael Withford, Macquarie University; Macquarie Australia
Presented at PICALO 2006

Periodically poled materials continue to be of great interest due to their applications in both bulk nonlinear optics and all-optical processing systems. Many groups continue to explore alternative techniques to lithographic surface electrodes for defining the domain pattern. The key objectives of these studies are to reduce the minimum domain size, produce uniformity in the domain structures and improve the cost effectiveness and speed of fabrication. We report progress on an investigation into poling lithium niobate using topographical electrode structures. The structures have been laser machined into the surfaces of 500 ?m thick z-cut lithium niobate crystals by various laser sources (355 nm YAG laser, 255 nm copper vapour laser, and 800 nm femtosecond laser). We will present a simple electrostatic model of the fields induced by topographical structures which indicates that there is advantages and also limitations in using this technique, in comparison to conventional surface electrodes. Good quality domain structures with periods greater than 20 ?m can be routinely fabricated using this method. Moving to thinner wafers, and using insulating and conducting layers in conjunction with laser processing, techniques should enable smaller periods to be achieved while maintaining the advantages of speed and cost effectiveness of using laser processing.

Product Thumbnail

$28.00

Members: $28.00

Note: When applicable, multiple quantity discounts are applied once the items are added to your cart.